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1 Introduction

Over the last number of years it has become clear that gravity in more than four dimensions

has qualitatively different solutions from those in four dimensions, included the celebrated

black rings (see [1] for a recent review). While there has been substantial progress in

describing all possible black holes, at least in five dimensions, there is still relatively little

known about topologically nontrivial stationary regular solutions (i.e. solitons) in higher

dimensions. It is worth noting such solutions are only possible in asymptotically flat or

asymptotically AdS spacetimes with more than four dimensions.

In four dimensions there are two key sets of results that forbid such objects. The first is

a result due to Gannon [2] that shows, provided the weak energy condition is obeyed, space-

times that are not simply connected necessarily contain singularities (i.e. are geodesically

incomplete). This does not stop one from writing down non-simply connected smooth initial

data, but if one does so the evolution of the spacetime is guaranteed to produce a singularity.

The second set of results go under the name of topological censorship [3] and demonstrate

that, given the averaged null energy condition, all causal curves going from past null in-

finity to future null infinity are homotopic to topologically trivial curves — in other words

any nontrivial topology is always invisible from infinity (e.g. hidden behind a horizon).

In four dimensional asymptotically flat or asymptotically AdS spacetimes if one pinches

off a cycle to produce a nontrivial topology, the resulting minimal surface is a circle and

one runs afoul of the above results. However, one can smoothly pinch off a circle in five

dimensions so the minimal surface is (topologically) an S2, thereby avoiding the above

obstructions. Such spacetimes are sometimes referred to as “bubbles of nothing”, as there

is no spacetime inside these “bubbles”. Note, however, they need not, and in the present

context will not, require an asymptotic Kaluza-Klein direction. Hence, we avoid the usual

problems of instabilities and the violation of supersymmetric boundary conditions associ-

ated with Kaluza-Klein bubbles [4].

A purely gravitational static soliton of nearly the type we seek is known in five dimen-

sions [5]. This (locally) asymptotically flat solution, dubbed the Eguchi-Hanson soliton, is

formed by writing S3 via the Hopf fibration and pinching off the S1 of that fibration in the

interior of the spacetime. As we will later briefly review, one can show generically [6], at

least in the absence of ergoregions and cosmological constant, that there are no globally

asymptotically flat smooth solitons. One must either allow for a conical singularity at

the bubble or quotient the asymptotic S3. Intuitively, gravity tends to make the bubble

collapse and the quotient or conical singularity reflects the fact that without matter or

angular momentum there is nothing to hold the bubble up. A class of solution generat-

ing techniques adding flux and angular momenta in the asymptotically flat case is known

([7]–[10]) and one might wonder if one could use these methods to eliminate the conical

singularity in the globally asymptotically flat Eguchi-Hanson soliton.
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The answer turns out to be in the affirmative. Furthermore, this generated solution

ends up being a small subset of the broad class of solutions one can construct, in both

asymptotically flat and asymptotically AdS spacetimes, by considering the black hole solu-

tions of [11] and choosing values of the parameters such that a cycle is smoothly pinched off

in the interior of the spacetime and no horizon is present. This approach to the solutions

of [11] has previously been examined by Ross [15] and part of our work will reproduce that

analysis. However there are several key differences from, as well as some generalizations

of, that work in our analysis. We also discuss a variety of striking features that were not

discussed in [15] or, as far as we know, anywhere else. In particular, some of the properties

of the asymptotically AdS solutions present some intriguing new questions in relation to

the AdS/CFT correspondence.

We begin by reviewing the solution of [11] and then show how to pinch off a cycle to

form the desired solitons. We show one may choose parameters such that the solutions are

smooth and closed timelike curves are not present. All such smooth solutions turn out to

have a nonzero local magnetic charge that may be defined by integrating a flux over the

minimal S2 of these solitons. After constructing the asymptotically conserved charges in

the fourth section, we consider the detailed properties of various classes of these solitons,

paying particular attention to ergoregions and the BPS bound. In particular, we find

asymptotically flat solutions that variously satisfy, saturate, and violate the BPS bound

(i.e. have more electric charge than mass). All of the asymptotically AdS solitons we have

found violate the standard BPS bound. All the solitons we find, with the exception of a

few small subclasses, possess ergoregions. In no case do we find only a single ergosphere

surrounding the entire bubble. Rather we find a variety of unusual ergosurfaces including

inner and outer ergospheres that surround the bubble, as well as ergosurfaces we will refer

to as capping spheres, which are topologically spheres but run into the bubble. We finally

end with some comments focusing on the violation of the BPS bound and the puzzle these

objects pose for AdS/CFT.

2 The Chong-Cvetic-Lu-Pope solution

We will consider solutions in gauged and ungauged minimal supergravity

S =
1

16πG

∫

d5x
√−g

(

R+ 12g2 − FabF
ab

4
− 1

12
√

3
ǫabcdeFabFcdAe

)

(2.1)

In the case where g 6= 0, the AdS length l is given by g = 1/l. A broad class of solutions

to this theory, including all topologically spherical black holes with two commuting axial

isometries [12], was given by Chong et al [11]

ds2 = −∆θ[(1 + g2r2)ρ2dt+ 2qν]dt

ΞaΞbρ2
+

2qνω

ρ2
+
f

ρ4

(

∆θdt

ΞaΞb
− ω

)2

+
ρ2r2dr2

W
+
ρ2dθ2

∆θ
+
r2 + a2

Ξa
sin2 θdφ2

1 +
r2 + b2

Ξb
cos2 θdφ2

2 (2.2)

and

A = sǫ

√
3q

ρ2

(

∆θ

ΞaΞb
dt − ω

)

+K0dφ1 +K1dφ2 (2.3)
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where

ν = b sin2 θdφ1 + a cos2 θdφ2 (2.4)

ω =
a

Ξa
sin2 θdφ1 +

b

Ξb
cos2 θdφ2 (2.5)

∆θ = 1 − a2g2 cos2 θ − b2g2 sin2 θ (2.6)

W = (r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq − 2mr2 (2.7)

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ (2.8)

f = 2mρ2 − q2 + 2abqg2ρ2 (2.9)

Ξa = 1 − a2g2, Ξb = 1 − b2g2 (2.10)

and

sǫ = ±1 (2.11)

where both signs yield solutions provided one takes the orientation of the spacetime to be

ǫtφ1φ2θr = sǫ
√−g (2.12)

Note the sign of the gauge potential and the sign of the orientation are correlated.1

We have made some minor notation changes from [11] for later convenience and gen-

eralized the gauge potential with an additional overall sign and extra constants K0 and

K1. The extra sign sǫ will allow us to explicitly keep track of the choice of orientation

of the spacetime and will ultimately show up in the sign of the electric charge. Aside

from places where φ1 and φ2 degenerate, adding the constants K0 and K1 is just a gauge

transformation. It will turn out that when we tune parameters of the above solution such

that we can find smooth solitons there are additional places where φ1 and φ2 degenerate

besides θ = 0 and θ = π/2 and if K0 and K1 are not chosen properly one does not obtain

entirely smooth solutions.

While in the case g = 0 the metric is manifestly asymptotically flat, for g 6= 0 the

solution does not look asymptotically AdS. This is, however, merely due to the choice of

coordinates and by defining

r̄2 =
r2∆θ + a2 sin2 θ + b2 cos2 θ − a2b2g2

ΞaΞb
(2.13)

and

cos(2θ̄) =
r2[Ξa cos2 θ − Ξb sin2 θ]− a2Ξb sin

2 θ + b2Ξa cos2 θ

r2[Ξa cos2 θ + Ξb sin2 θ] + a2Ξb sin
2 θ + b2Ξa cos2 θ

(2.14)

the metric in terms of (r̄, θ̄) is manifestly globally asymptotically AdS.

Now let us consider the regularity of this solution. The necessary and sufficient con-

dition for the absence of closed timelike curves (CTCs) at infinity is that Ξa > 0 and

Ξb > 0, or equivalently that |ag| < 1 and |bg| < 1. The radial component of the metric

1 It is possible to absorb this sign into a redefinition of the Chern-Simons coupling in (2.1), effectively

changing the theory. We shall adopt the choice given in equation (2.1).
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will diverge if W (r) has a zero, but this is merely a coordinate singularity and easily re-

moved. The metric components are otherwise divergence free unless there is some locus

where ρ2 = r2 + a2 cos2 θ + b2 sin2 θ = 0. At first glance one might think this would never

occur,at least if a and b are nonzero, but if one tried to restrict r to only real values one

would not obtain a geodesically complete spacetime. In these coordinates r = 0 does not

correspond to a place where a sphere or other cycle has zero volume. For small r, grr ∼ r2.

One can remove the coordinate singularity at r = 0 by defining R = r2 and then it is

straightforward to check that the spacetime and its geodesics continue through to R < 0

(or imaginary r). If the spacetime continues to negative enough R, ρ will go through a

zero. It is straightforward to check for q 6= 0 the Ricci scalar diverges if ρ vanishes and this

is a physical singularity. So if we want to find a totally regular solution (with q 6= 0) we

must not allow r2 to become so negative that ρ ever vanishes. This then implies

r2 > −a2 (2.15)

if b2 ≥ a2 and

r2 > −b2 (2.16)

if a2 ≥ b2.

The determinant of the solution is given by the remarkably simple expression

− r2ρ4 sin2 θ cos2 θ

(1 − a2g2)2(1 − b2g2)2
(2.17)

and so, aside from the coordinate singularity due to grr at r = 0 (which, as noted above, may

be removed by going to a new radial variable R = r2) and the usual coordinate singularities

at the poles of the S3 at θ = 0 and θ = π/2, the metric is invertible provided ρ > 0. Note at

first glance one might worry the metric changes signature when we continue to imaginary r

but this is merely an artifact of using bad coordinates; if one uses the radial coordinate R the

factor r2 is removed from the determinant and the signature is negative definite everywhere.

3 Finding solitons

3.1 Choosing a cycle

As we saw above, the solution we begin with encounters a singularity in the deep interior.

For black hole solutions, provided this singularity is behind a horizon, this does not concern

us any more than any other black hole singularity. In the absence of an horizon the only

way to avoid this singularity is to keep geodesics from extending this far. We will do this by

smoothly pinching off a periodic direction, leaving the spacetime with a minimal surface,

or bubble. The result will ultimately be a geodesically complete spacetime that is entirely

regular (or at worst has orbifold singularities) and hence is necessarily horizon free.

If one tries to pinch off the directions φ1 or φ2 one generically only finds singular

solutions, essentially due to the fact there are places on the S3 where these directions

– 5 –
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already vanish. Instead we may define a new periodic direction ψ (which will pinch off in

the interior of the spacetime) and a second direction φ as linear combinations of φ1 and φ2

∂

∂ψ
= α

∂

∂φ1
+ γ

∂

∂φ2
(3.1)

∂

∂φ
= β

∂

∂φ1
+ δ

∂

∂φ2
(3.2)

In terms of coordinates this implies

φ1 = αψ + βφ (3.3)

φ2 = γψ + δφ (3.4)

In order for the transformation to be invertible we must have αδ − βγ 6= 0. One can show

that if one tries to pinch off the ∂/∂ψ with α = 0 one necessarily encounters one of the

singularities we will describe latter in detail, so we restrict ourselves to α 6= 0. Rescaling the

angles ψ and φ allows one to absorb two of the four parameters in the above (3.3), (3.4), say

α and δ (or, in the case δ vanishes, α and β). The ratio γ/α parametrizes the particular

cycle we are pinching off and, as we will see below, its value will influence the physical

properties of our solitons. Presuming δ 6= 0, the remaining parameter β/δ parametrizes

the remaining freedom in choosing a particular ∂/∂φ; there does not appear to be any

obstruction to defining a global gauge transformation to set β/δ to any desired value and

hence regarding it as pure gauge.

We wish to insist ψ is a periodic coordinate, so that we may pinch it off in the interior

of the spacetime. This then forces γ/α to be rational and without loss of generality we

may take
γ

α
=
m1

m0
(3.5)

where m1 and m0 are relatively prime integers and m0 > 0. φ, on the other hand need

not be periodic, and indeed in the case of the Hopf fibration one can only make φ periodic

at the cost of quotienting the asymptotic sphere (see appendix A). Instead we choose to

construct solutions which are globally asymptotically flat or globally asymptotically AdS.

Following through a similar analysis (appendix B) as that for the Hopf fibration, we find

the period of ψ must be

∆ψ =
2πm0

|α| (3.6)

and the range of φ must be

∆φ =
2π

|m0δ −m1β|
(3.7)

As we explain in detail in the appendix, while away from the bubble φ is generically better

described as an azimuthal angle rather than a polar one, due to the degeneration of ∂/∂ψ

at the bubble surface it becomes effectively periodic there and we will be left with an S2

parametrized by θ and φ.

In these new coordinates it will be handy to define

C0 = αK0 + γK1 (3.8)

– 6 –
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and

C1 = βK0 + δK1 (3.9)

so that the potential is

A =

√
3q

ρ2

(

∆θ

ΞaΞb
dt − ω

)

+C0dψ + C1dφ (3.10)

3.2 Pinching off a cycle

We wish to pinch off the ψ direction to form a soliton, producing a minimal surface which

is topologically an S2, parametrized by (θ, φ). The only way we can do this is if there is

some surface upon which gtψ = gψψ = gψφ = 0. The simplest of these conditions is gtψ = 0.

Defining as before R = r2, we can then solve

gtψ(R0) = 0 (3.11)

for R0. Note at this stage R0 is not a constant but a function of θ. As we will discuss

in detail below, we will only be able to find an entirely smooth soliton if we can choose

C0 such that Aψ vanishes at R = R0. Hence we must demand that Aψ(R0) is a constant.

Finally insisting that gψψ(R0) = 0, straightforward, if slightly tedious, algebra shows we

have a chance at smooth solitons only if a and b are nonvanishing and

γ

α
=
m1

m0
=
a(1 − b2g2)[a2 − b2 + s0

√

(a2 − b2)2 − 4abq]

b(1 − a2g2)[b2 − a2 + s0
√

(a2 − b2)2 − 4abq]
(3.12)

m = − q

4ab

[

a2 + b2 + 2a2b2g2 + s0
√

(a2 − b2)2 − 4abq
]

(3.13)

and

R0 =
1

2

[

− (a2 + b2) + s0
√

(a2 − b2)2 − 4abq
]

(3.14)

where s0 = ±1. Further with the above one finds gψφ(R0) = 0 and so we have accomplished

our goal of pinching off the ψ direction. One also automatically finds W (R0) = 0, but as

noted before this is merely a coordinate singularity.

We will turn in a moment to the question of smoothness of the manifold near R = R0

but first let us note that ρ2 is positive definite for r2 ≥ R0 if and only if

s0 = 1 (3.15)

and

abq < 0 (3.16)

and since we are interested in smooth solutions we henceforth adopt (3.15) and (3.16).

Note that (3.16) also automatically assures the reality of (3.12)–(3.14). In order for R to

remain a spacelike direction we must ensure W (R) has no zeroes for R > R0 and only a

simple zero at R0; this will follow if and only if

0 < −abq < a2b2 (3.17)

– 7 –
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Note this will then imply that R0 < 0, although this, again, is simply due to the choice

of coordinates used to write down the solution and does not reflect any pathology in the

spacetime. It is convenient to define

Q = − q

ab
(3.18)

so that (3.17) becomes

0 < Q < 1 (3.19)

We note, incidentally, we do not find any purely gravitational smooth solutions (i.e.

q = 0). Intuitively, gravitation would like to make the would-be soliton collapse and so one

needs flux to stabilize the solution. As mentioned before, in the absence of a cosmological

constant one can prove generically there are no globally asymptotically flat purely grav-

itational solitons [6], at least provided one assumes the absence of an ergoregion. Given

the vacuum Einstein equations and a familiar maximization argument, one can show such

would-be solutions are necessarily the product of a flat time direction and a Riemannian

Ricci flat manifold. The existence of solitons is then equivalent to the existence of nontriv-

ial asymptotically Euclidean solutions and since there are none [13], there are no globally

asymptotically flat solitons. We are not aware, however, of a generalization to nonzero

cosmological constant.

3.3 Removing conical singularities

Now turning to the issue of smoothness near r2 = R = R0, if we define

z =
√

R−R0 (3.20)

then the worrisome part of the metric is

ds2 =
ρ2

K2
(dz2 +K2K3z

2dψ2) + a0(θ)z
2dtdψ + a1(θ)z

2dψdφ + · · · (3.21)

where the constants K2 and K3 are given by

K2 = − R0

2a2b2

[

(a2 − b2)2 + 2a2b2Q+ (a2Ξb + b2Ξa)
√

(a2 − b2)2 + 4a2b2Q
]

(3.22)

K3 =
2α2

[

(a2 − b2)2 + 2a2b2Q+ (a2Ξb + b2Ξa)
√

(a2 − b2)2 + 4a2b2Q
]

b2(1 − a2g2)2
[

b2 − a2 +
√

(a2 − b2)2 + 4a2b2Q
]2 (3.23)

The omitted terms in (3.21) are generically nonvanishing, except at the axes θ = 0 and

θ = π/2; these are simply the poles of the S2 of the bubble and will be discussed below.

Given (3.19), both K2 and K3 are positive definite. We will not be concerned with the

precise forms of a0(θ) and a1(θ), although of course they may be calculated using the above.

At worst the only lack of smoothness will be a conical singularity. Generically we may wish

to allow a Zk orbifold singularity at the bubble. Then we must impose

√

K2K3 =
|α|
m0k

(3.24)
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or equivalently

−
R0

[

(a2 − b2)2 + 2a2b2Q+ (a2Ξb + b2Ξa)
√

(a2 − b2)2 + 4a2b2Q
]2

a2b4Ξ2
a

[

b2 − a2 +
√

(a2 − b2)2 + 4a2b2Q
]2 =

1

m2
0k

2
(3.25)

The above does not quite ensure the absence of all conical singularities. As we remarked

above, the φ direction becomes periodic at the bubble. One can check φ degenerates at the

poles of the remaining S2-namely θ = 0 and θ = π/2. These are simply the places where

the axis ∂/∂φ1 and ∂/∂φ2 run into the bubble. Away from the bubble, our coordinates ψ

and φ are equivalent to the original φ1 and φ2 and a few moments consideration of (2.2)

should convince the reader that as long as the latter both have periods of 2π we will have

no conical singularities away from the bubble. However, at the bubble itself, the directions

∂/∂φ1 and ∂/∂φ2 degenerate (since ∂/∂ψ does) and we must use a coordinate which makes

sense there, namely φ. Near θ = 0 the metric on the bubble becomes

ds2 =
R0 + a2

Ξa
[dθ2 +K4 θ

2 (dφ+K5dt)
2 +K6dt

2] + · · · (3.26)

where

K4 =
(m0δ −m1β)2

m2
1

(3.27)

and we will not be concerned with the precise value of the constants K5 and K6. Recalling

that φ is periodic at the bubble with period

∆φ =
2π

|m0δ −m1β|
(3.28)

then we have a Z|m1| orbifold singularity at θ = 0. Likewise, one finds near θ = π/2 one

finds a Zm0
orbifold singularity on the bubble. Hence, aside from the case |m1| = m0 = 1,

when, as we will show below, the minimal S2 is round, we have an orbifold singularity on

at least one pole of the S2. One might describe this shape generically as an asymmetric

football. While classically this is a lack of smoothness, in string theory these singularities

do not concern us, at least if one does not allow an additional orbifold singularity along

the entire surface of the bubble (i.e. take k = 1). The more generic case involves orbifold

singularities within orbifold singularities and we do not know that this situation has ever

been studied carefully.

3.4 Causal stability

We now check that these solutions have no closed timelike curves. One simple way to rule

out such pathologies is to show that gtt is everywhere negative definite, for then t is globally

a good time function. One can check that gtt is independent of the choice of α, β, γ, and

δ and so we obtain the same manifestly negative definite expression obtained in [15]

gtt = − (R−R0)

W∆θρ2a2b2

[

a2b2ΞaΞb(R−R0)
[

R−R0 + ρ2
0 +

√

(a2 − b2)2 + 4a2b2Q
]

+δ0

[

Ξba
2(b2 +R0) sin2 θ + Ξab

2(a2 +R0) cos2 θ
]

]

(3.29)
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where ρ2
0 = ρ2(R = R0),

δ0 =
1

2

[

(a2 − b2)2 + 2a2b2Q+ (a2Ξb + b2Ξa)
√

(a2 − b2)2 + 4a2b2Q
]

(3.30)

and we recall R0 + a2 > 0 and R0 + b2 > 0 (a necessary condition for ρ2 > 0, as well as

manifest from the expression for R0 (3.14)). The reader might be concerned the expres-

sion (3.29) might vanish at R = R0 but recall that W (R0) = 0 and R = R0 is the largest

zero of W , so gtt is negative definite.

3.5 Smoothness of the gauge potential and local charge

If the gauge potential is to be finite at the bubble then it must be true that

Aψ = A ·
(

∂

∂ψ

)

(3.31)

vanishes at the bubble since the Killing vector ∂/∂ψ does. Note if one does not do this

there will be a δ-function flux along the bubble, since if one considers a disk in the (R,ψ)

plane near the bubble
∫

disk
F =

∫

boundary
A (3.32)

does not become small for R arbitrarily close to R0. In a non-gravitational theory one often

allows such nonzero δ-function fluxes, provided they are suitably quantized in units of the

electric charge of fundamental fermions. This is simply the usual Dirac string construction,

although in this case one has a sphere rather than a string. However, once gravitational

backreaction is included, the metric will not be smooth for such fluxes. We wish to find

entirely smooth solutions and so it must be true for the entire surface of the bubble that

C0 = − 2
√

3sǫa
2bQα

Ξa[b2 − a2 +
√

(b2 − a2)2 + 4a2b2Q]
(3.33)

Note C0 is nonzero unless Q, a, or b vanishes and, as noted above, any of these options

only lead to singular solutions.

Likewise there are two other axes where we must ensure the potential does not have

a hidden singularity. The directions ψ and φ become degenerate at θ = 0 and θ = π/2.

This simply reflects the fact the axis φ1 degenerates at θ = 0 and the axis φ2 at θ = π/2.

As before, the places where these axis run into the surface of the bubble are simply the

northern and southern poles of the minimal S2. Then we must ensure that

0 = A · ∂

∂φ1

∣

∣

∣

θ=0
→ δC0 − γC1|θ=0 = 0 (3.34)

and

0 = A · ∂

∂φ2

∣

∣

∣

θ=π/2
→ −βC0 + αC1|θ=π/2 = 0 (3.35)

If C0 and C1 were constant (and not identically zero) over the entire spacetime this would

imply αδ − βγ = 0 and we would not have had a valid diffeomorphism in the first place.
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The solution is that the gauge potential cannot be defined globally but must be defined

in patches around θ = 0 and θ = π/2. Perhaps the simplest such patches are two hemi-

spherical regions between 0 ≤ θ < θ0 and θ0 < θ ≤ π/2 respectively, for some constant

θ0 between 0 and π/2. Note these patches are not localized in the radial direction; they

extend throughout the entire spacetime. In analogy to the terminology familiar from the

magnetic monopole in four dimensions, one may refer to the patch surrounding θ = 0 as

the northern patch and around θ = π/2 as the southern patch. Since, as noted above,

keeping the potential regular at the bubble forces C0 to have the same value in both these

patches we will be forced to take C1 to have different values in these two different patches.

In particular if we wish a smooth solution we must take

C
(N)
1 =

δ

γ
C0 = − 2

√
3 sǫab

2Qδ

Ξb[a2 − b2 +
√

(b2 − a2)2 + 4a2b2Q]
(3.36)

and

C
(S)
1 =

β

α
C0 = − 2

√
3 sǫa

2bQβ

Ξa[b2 − a2 +
√

(b2 − a2)2 + 4a2b2Q]
(3.37)

Alternatively, if one did not mind a δ-function field flux along the θ = 0 or θ = π/2 axis

one could define C1 globally — this is simply the familiar Dirac string. We prefer entirely

smooth solutions so instead choose to work with these two patches. To make contact with

our original constants for the potential K0 and K1 (2.3), the above conditions imply that

at θ = 0, K0 = 0 but K1 6= 0 and likewise at θ = π/2, K1 = 0 but K0 6= 0.

One might not necessarily trust the above to ensure that the potential is entirely

regular on the bubble at the poles of the S2 since, as noted before, the Killing vectors

in (3.34) and (3.35) are degenerating there. Then let us note that along the axis θ = 0

Aφ(θ = 0) = A · ∂
∂φ

∣

∣

∣

θ=0
=

√
3ab2sǫQδ

Ξb(R+ a2)
+C

(N)
1 (3.38)

and along the axis θ = π/2

Aφ(θ = π/2) = A · ∂
∂φ

∣

∣

∣

θ=π/2
=

√
3a2bsǫQβ

Ξa(R+ b2)
+ C

(S)
1 (3.39)

Provided that one specifies C
(N)
1 and C

(S)
1 as in (3.36) and (3.37), it is straightforward

to see using (3.14) that at R = R0, Aφ vanishes at θ = 0 and at θ = π/2 as it should.

Since the bubble and the θ = 0 and θ = π/2 axes are the only places where ψ and φ (and

equivalently φ1 and φ2) degenerate and the potential is manifestly regular elsewhere, the

conditions (3.33), (3.36), and (3.37) are the necessary and sufficient conditions to have a

regular gauge field. In particular, they are sufficient to ensure AaA
a is regular everywhere;

the conditions we have actually used are rather stronger than the criterion that A2 is

regular since conceivably one could have unexpected cancellations in the latter quantity.

The fact that the potential cannot be globally well defined follows from the fact that

as soon as there is a minimal two-surface S (i.e. a bubble) one can define a nonzero charge

by integrating the two form field strength over that surface

qm =
1

4π

∫

S
F (3.40)
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This charge will be conserved since F is closed, at least as long as the spacetime does

not evolve in such a way that S ceases to exist. Note further that one will obtain the

same charge from any other two-surface cobordant to S, again since F is closed. This may

be described as a local charge since in five dimensions the globally conserved charges are

defined by integrating forms over a three manifold that is topologically S3, usually just

the S3 at infinity. A global electric charge is given by integrating the dual of F (plus, in

the context of minimal supergravity, a Chern-Simons term) and a global magnetic charge

by integrating a three-form. While, as we discuss later, one may obtain an electric charge

for these solutions, the global magnetic charge vanishes identically since there is no three-

form field strength. This local charge cannot (apparently) be given in terms of such a

three-form and in any case the gauge symmetries seem to be entirely accounted for by

the usual global charges. In the context of black rings, such charges were dubbed “dipole

charges” [14], where S is (or cobordant to) the S2 of the horizon (S1 × S2), although the

name derives from the fact that in that context one obtains qm with opposite signs from

points on opposite sides of the ring. Also to measure this charge for black rings the surface

S must go through the middle of the ring; for our charge, in contrast, one still gets a

nonzero answer with an S2 everywhere arbitrarily far away from the bubble.

For the solitons we are considering, taking S to be the bubble surface one finds

qm = −
√

3(b2 +R0)

2am0Ξb
(3.41)

where the orientation of the spacetime is, as before, ǫtφ1φ2θr = sǫ
√−g. In the case b2 = a2

the local charge is directly related to Q and, as we will later see, the electric charge

qm = −
√

3Qa

2m0Ξa
(3.42)

while in the more generic case the relation of qm and Q is somewhat more indirect

qm = −
√

3[b2 − a2 +
√

(b2 − a2)2 + 4a2b2Q]

4am0Ξb
(3.43)

Note the local charge qm is necessarily nonzero for any smooth solutions — just as we found

above, none of the solutions have a globally defined regular potential. This connection,

of course, is no accident. If there were a globally well-defined potential then the integral

of F over any compact manifold would necessarily vanish. In fact, on the surface of the

bubble we locally have a situation identical to the magnetic monopole in four dimensions

and, as in that case, one necessarily finds either one must take the potential to be defined

in patches or the potential and the field strength diverge along some axis.

Recall fundamental fermions with charge e0 pick up a phase eie0
H

A·dl when moved

along a closed loop. We must ensure such fermionic wavefunctions are continuous between

our two patches and hence that they pick up the same phase when going around a closed

loop. Alternatively, one can allow the patches to overlap in some region and demand that

the acquired phase be the same no matter which potential one considers in the overlap

region. In any case, one finds

2πn = ∆φ(C
(N)
1 − C

(S)
1 )e0 = sǫsgn[α(αδ − βγ)]4πqme0 (3.44)
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for some integer n. Absorbing the various signs into the definition of n yields

qme0 =
n

2
(3.45)

the usual Dirac quantization condition. That one would obtain the condition familiar from

four dimensions (with qm instead of the global magnetic charge) should be no surprise

since, as noted above, on the surface of the bubble the situations are identical. For the

sake of compactness, it is handy to define another integer p = −n. We then obtain

p =

√
3e0[b

2 − a2 +
√

(b2 − a2)2 + 4a2b2Q]

2am0Ξb
=

√
3e0(b

2 +R0)

am0Ξb
(3.46)

Depending on the context, there may be some special value of e0 which one wishes to

impose. For example, one may wish to embed the solution into AdS5 × S5 via the method

of [16] where the gauge field A is just a Kaluza-Klein gauge field

ds210 = ds25 +
1

g2
Σi

[

dµ2
i + µ2

i

(

dφi +
g√
3
A

)2]

(3.47)

and the coordinates on the S5 are µi and φi. In this context, one is forced to take

e0 =
g√
3

(3.48)

For our asymptotically AdS solitons we will later impose this condition. We wish to empha-

size, however, that once one requires e0 = g/
√

3, or more generically any condition where

e0 is proportional to g, the limit g → 0 of (3.46) will no longer be a sensible condition to

impose. In such a limit one obtains only neutral fundamental fermions, in which case one

never had a Dirac quantization condition to begin with. As we will see later, the asymp-

totically flat solutions often have qualitatively different features from the asymptotically

AdS solitons.

Let us contrast the above quantization conditions with those one would obtain if one

refused to admit the constants C0 and C1. Let us define the corresponding potential as Ā

Ā = sǫ

√
3q

ρ2

(

∆θ

ΞaΞb
dt− ω

)

= A
∣

∣

∣

C0=C1=0
(3.49)

One then cannot set Āψ(R0) = 0 but if one takes the perspective, as in [15], that this is not

problematic provided the flux is suitably quantized in terms of the charge of fundamental

fermions, then one finds a Dirac quantization condition analogous to (3.44):

2πn̄ = ∆ψĀψ(R0)e0 (3.50)

and defining p̄ = sgn[α]sǫn̄

p̄ =

√
3e0m0a

2bQ

Ξa(b2 +R0)
=

√
3e0m0(a

2 +R0)

bΞa
(3.51)
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after a few lines of algebra using the value of R0 from eq. (3.14). Comparing this to what

one obtains with our quantization condition (3.46), one finds the ratio between the two is

proportional to γ/α = m1/m0 (3.12)

p̄ = m2
0

γ

α
p = m1m0p (3.52)

Hence the quantization conditions are equivalent only if |m1| = m0 = 1. As we will discuss

later, this turns out to be the condition if and only if the bubbles have equal magnitude

angular momenta in the two orthogonal spatial planes. In any other case, generic values

of p̄ will not correspond to integer values of p and our condition will be violated. From

the perspective of allowing these δ-function fluxes, the stronger condition we impose (3.46)

comes from a second Dirac quantization condition arising from the fact the potential is not

globally defined due to qm 6= 0. One can also see this from (3.38) and (3.39); if C1 = 0 the

potential on the poles of the S2 is unequal and at the surface of the bubble the argument

proceeds entirely along the lines familiar from the magnetic monopole in four dimensions.

3.6 Summary

It is worth collecting the criteria we must impose to obtain smooth solutions at this point.

We began with a four continuous parameter family of black hole solutions (m, q, a, b) (such

that a2g2 < 1 and b2g2 < 1) and added an additional parameter γ/α by different choices of

cycles one can pinch off. We also allowed some additional constants (C0, C1) in the gauge

potential, but found that regularity fixed them entirely. It will be handy to define

γ0 ≡ γ

α
=
m1

m0
(3.53)

Then from (3.12) to pinch off a cycle and produce a soliton we must require that

γ0 =
a(1 − b2g2)[a2 − b2 +

√

(a2 − b2)2 + 4a2b2Q]

b(1 − a2g2)[b2 − a2 +
√

(a2 − b2)2 + 4a2b2Q]
(3.54)

where recall the dimensionless charge Q is defined so that q = −abQ. The bubble is located

at r2 = R = R0 where

R0 =
1

2

[

− (a2 + b2) +
√

(a2 − b2)2 + 4a2b2Q
]

. (3.55)

and the value of m is (3.13)

m =
Q

4

[

a2 + b2 + 2a2b2g2 +
√

(a2 − b2)2 + 4a2b2Q
]

. (3.56)

We will not have any curvature singularities (due to encountering a zero of ρ) provided

0 < Q < 1 (3.57)

From the absence of a conical singularity on the entire bubble surface (3.25)

−
R0

[

(a2 − b2)2 + 2a2b2Q+ (a2Ξb + b2Ξa)
√

(a2 − b2)2 + 4a2b2Q
]2

a2b4Ξ2
a

[

b2 − a2 +
√

(a2 − b2)2 + 4a2b2Q
]2 =

1

m2
0k

2
(3.58)
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and from the Dirac quantization condition (3.46)

√
3(b2 +R0)e0
am0Ξb

= p (3.59)

Solving for these conditions (3.54), (3.58), and (3.59) then fixes the remaining original

continuous parameters of the black hole (q, a, b) in terms of four integers (m0,m1, p, k) and

the fermion charge e0.

4 Asymptotic charges

4.1 Gravitational charges

For the black hole solutions we began with, it is possible to derive the mass as a result

of the first law, as is done in [11]. For these solitons with local charge, one might worry

that such a first law should include a term due to local charge, as occurs for dipole black

rings [20], and integrating the full first law might lead to results different from those of [11].

Further, without a horizon the appropriate definition of Ω becomes somewhat confusing.

To avoid these complications, we will present simple and efficient geometric definitions of

the conserved charges, namely the Komar integrals for the asymptotically flat spaces and

the electric part of the Weyl tensor in the AdS case that we trust will be regarded as

entirely noncontroversial. We will also provide results for the charges based on covariant

phase space Lagrangian methods. In the end, the above concerns appear to be unfounded,

at least for this class of solutions; all these methods reproduce precisely the results of [11].

Let us first consider charges in the asymptotically flat case. It is straightforward to

check that the 2-form F falls off fast enough that the Komar integrals corresponding to a

Killing vector are conserved. With the normalization conventions2 of [24, 25]

M = − 3

16πG

∫

⋆∇ξ0 = − 3

32πG

∫

ǫabcde∇dξe =
3πm

4G
(4.1)

where ξ0 = ∂/∂t. The lack of curvature singularities (3.57) forces m > 0 (3.56). Hence, we

have manifestly positive mass solitons.

For the angular momenta associated with the Killing vectors ξ1 = − ∂
∂φ1

and ξ2 = − ∂
∂φ2

,

respectively, we find

Jφ1
= − 1

8πG

∫

⋆∇ξ1 =
πa (2m− b2Q)

4G
(4.2)

and

Jφ2
= − 1

8πG

∫

⋆∇ξ2 =
πb (2m− a2Q)

4G
(4.3)

Inputting the value of m required from (3.13) for solitons gives

Jφ1
=
πaQ

8G

[

a2 − b2 +
√

(a2 − b2)2 + 4a2b2Q
]

(4.4)

2We associate the angular momenta Jφi
to minus the generator ∂

∂φi

which differs by a sign from the

convention used in [21].
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and

Jφ2
=
πbQ

8G

[

b2 − a2 +
√

(a2 − b2)2 + 4a2b2Q
]

(4.5)

and hence these solutions are necessarily rotating in both planes.

It is known that nearly all ways to define conserved quantities in AdS space are equiv-

alent up to zero-point ambiguities [17]. Perhaps the computationally easiest way to find

charges for AdSd is via the electric part of the Weyl tensor [18]

Qξ =
−l3

8πG(d − 3)

∫

dSEabu
aξb (4.6)

where the integral is over the boundary at spatial infinity of a spacelike slice Σ, dS contains

the usual measure on that boundary (i.e. in global coordinates grows as rd−2) and ua is

the timelike unit normal to Σ. The electric part of the Weyl tensor is

Eab = Cacbd
∇cΩ

Ω

∇dΩ

Ω
(4.7)

and the Weyl tensor is, as usual,

Cacbd = Racbd −
gabRcd − gadRbc − gbcRad + gcdRab

d− 2
+
R(gabgcd − gadgbc)

(d− 1)(d− 2)
(4.8)

The factor Ω is a conformal completion for the AdS space, so that the unphysical metric

g̃ab = Ω2gab (4.9)

given in terms of the physical metric gab admits a smooth limit at infinity. In global

coordinates, one typically takes

Ω =
1

r
(4.10)

although of course there is an infinite family of other completions one might use. Note in the

above all quantities in (4.6)–(4.8) are given, for ease of computational use, in terms of the

physical metric. One can quickly check that Fab again falls off fast enough [18] such that we

obtain conserved charges. Using the electric part of the Weyl tensor, for the mass one finds

M = Qt =
π[(2Ξa + 2Ξb − ΞaΞb)m− 2a2b2Qg2(Ξa + Ξb)]

4GΞ2
aΞ

2
b

(4.11)

Note for our solitons, while m > 0 since Q > 0 the mass might appear to be in danger of

becoming negative. A bit of algebra, however, shows that as long as one enforces the ab-

sence of curvature singularities (3.15), (3.19), M will be positive definite. For the angular

momenta3

J1 = Qφ1
=
πa (2m − b2Q(1 + a2g2))

4GΞ2
aΞb

(4.12)

and

J2 = Qφ2
=
πb (2m− a2Q(1 + b2g2))

4GΞ2
bΞa

(4.13)

3Associating the angular momenta with minus the generator ∂
∂φi

; see, e.g. [28], for a discussion of this

point.
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For our solitons, inputting the value of m, this becomes

Jφ1
=

πaQ

8GΞ2
aΞb

[

a2 − b2 +
√

(a2 − b2)2 + 4a2b2Q
]

(4.14)

and

Jφ2
=

πbQ

8GΞ2
bΞa

[

b2 − a2 +
√

(a2 − b2)2 + 4a2b2Q
]

(4.15)

and, just as in the asymptotically flat case, any smooth solitons are necessarily rotating

in both planes. Note the asymptotically flat charges are precisely reproduced as g → 0.

Further, comparing the angular momenta between the two planes

Jφ1
∓ Jφ2

=
π(a∓ b)Q

8GΞ2
aΞ

2
b

[

(a± b)2(1 ∓ abg2) + (1 ± abg2)
√

(a2 − b2)2 + 4a2b2Q
]

(4.16)

Since the term in brackets in (4.16) is positive definite (since |ag| < 1 and |bg| < 1),

Jφ1
= ±Jφ2

if and only if b = ±a. For the sake of compactness, we will use the term

“equally rotating” to describe solutions with equal magnitudes of angular momenta in the

two planes (i.e. |Jφ1
| = |Jφ2

|) since any distinctions between the two signs should be clear

in the given context.

While the above methods have the advantage of being calculationally and conceptually

rather straightforward, they can be shown to be canonically associated with the Killing

vectors in the Hamiltonian or Lagrangian sense only indirectly, see e.g. [17, 25]. One can

directly calculate the covariant phase space charges for both asymptotically flat and asymp-

totically AdS spacetimes in a unified framework via the methods of [22]. In this context,

the zero-point ambiguities are fixed by setting the charges to zero for asymptotically flat

and globally asymptotically AdS space. The method consists of the integration of a 3 form

associated with a Killing vector ξ defined uniquely from the theory at hand independently

of the asymptotic behavior of the spacetime. The charge is defined by the integration of

a form and so is coordinate-independent. The charge could be non-zero only when the

surface of integration has a non-trivial homology, i.e. surrounds a black hole, a conical

deficit or a non-trivial topology of the spacetime for example. The exact expression of the

surface charge for our Lagrangian can be found in [23].

Since the gauge field decays for large radius, it is convenient to evaluate the mass

and angular momenta on a sphere at large radius so that only the gravitational field will

contribute. Since the metric is a smooth function of g in any region of the spacetime

around some fixed radius, the surface charge constructed out of the metric will also depend

smoothly on g in that region and the limit g → 0 will be well defined. By construction, the

charges associated with a Killing vector ξ will be the canonical quantities associated with ξ

in the limit g → 0 as well. Using a Mathematica code, one finds the same charges as above.

4.2 Electric charge and the BPS bound

The usual definition of electric charge, consisting of an integral over the S3 at infinity, in

the asymptotically AdS case yields

QE =
1

16πG

∫

S3
∞

(⋆F − F ∧A/
√

3) = −
√

3πsǫabQ

4GΞaΞb
(4.17)
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and, as one might expect, defining charge in the same way in the asymptotically flat case

gives

QE = −
√

3πsǫabQ

4G
(4.18)

Note in this context one must define the potential (and integral) in patches but since the

field strength asymptotically goes to zero the Chern-Simons term drops out of the expres-

sion. Such an expression would not yield a sensible conserved charge at any finite radius.

More precisely, one will not obtain the same asymptotically conserved charge. Since the

potential is not globally well-defined one picks up an extra contribution from the interface

between the two patches and what one would like to call the electric charge depends on the

choice of surface. However, as long as the above expressions are evaluated at infinity with

the usual asymptotics (either flat or AdS) where the field strength falls off at infinity, it

will be conserved and gauge invariant (under smooth gauge transformations continuously

connected to the identity).

It is worth noting that the reason one obtains nonzero electric charge for a completely

regular solution without any sources or internal boundaries is entirely due to the fact that

the potential is not globally well-defined. Without this local charge, (4.17) would yield the

conserved charge at any radius and provided the field strength and potential were regular

everywhere the expression would vanish as the integration surface S approached the bubble

and the three-volume vanished. One can show the QE above may be directly related to

the difference in gauge potential between the two patches (appendix C).

It is possible to define another notion of charge that may be calculated at a finite

radius in the presence of local magnetic charge, that is

Q̄E =
1

16πG

∫

bdy patches
(⋆F − F ∧A/

√
3) (4.19)

where the integral runs over the boundaries of all gauge patches needed to define the

potential. In our context this means one has contributions not only from an S3, but also

from the interface between the two gauge patch hemispheres all the way down to the

bubble. For solutions like ours, where the field equation is satisfied without additional

sources or singularities, Q̄E is necessarily zero. More generically, in the presence of point

charges or electrically charged black holes, for example, it will be nonzero. While this

definition of charge will be conserved in the presence of nonzero F and a potential which

is not globally well-defined, it is not the usual notion which, among other things, enters

into the conventional BPS bounds. It also does not match the usual notion of a conserved

charge in that it is not calculated only in the asymptotic region. Hence it is not clear that

this notion is anything more than a curiosity. For the remainder of our discussion we will

return to the conventional definition (4.17).

For the asymptotically flat case, given the normalizations above for our conserved

quantities and in the action (2.1), the BPS bound [19, 24] is4

M ≥
√

3|QE| (4.20)

4In both the asymptotically flat and asymptotically AdS cases we will use the conventional definition of

the BPS bound; various possible modifications are left for the discussion at the end of the paper.
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One fairly straightforward way to verify that, including all normalizations, (4.20) is pre-

cisely correct is to compare it with a known supersymmetric solution. Of course, such

solutions saturate (4.20). In five asymptotically flat dimensions, probably the simplest

such solution is the extremal static charged black hole [19] — that is the generalization of

Reissner-Nordstrom to five dimensions.

In terms of the parameters of the present solution the BPS bound (4.20) in the case

g = 0 is equivalent to the statement that

βQ ≡
√

3|QE |
M

=
|q|
m

≤ 1 (4.21)

or for these solitons if one defines b0 = b/a

1 ≤ 1 + b20 +
√

(1 − b20)
2 + 4b20Q

4|b0|
(4.22)

Equivalently the bound will be violated if

5 −Q−
√

(9 −Q)(1 −Q)

4
< |b0| <

5 −Q+
√

(9 −Q)(1 −Q)

4
(4.23)

saturated if

|b0| =
5 −Q±

√

(9 −Q)(1 −Q)

4
(4.24)

and otherwise respected. Noting that the lower bound in (4.23) is strictly less than one

and the right hand side strictly greater than one, there is always some range around the

equally rotating case which violates the bound. In particular, the bound is violated in the

equally rotating case.

In the AdS case, the BPS bound is given by ([27, 28])

M ≥
√

3|QE | + g|Jφ1
| + g|Jφ2

| (4.25)

or equivalently the statement that

βQ ≡
√

3|QE| + g|J1| + g|J2|
M

≤ 1 (4.26)

One may check the normalizations in the above with the relatively simple supersymmetric

black holes of [28]. For our solitons5

βQ =
12|ab|ΞaΞb + 2(a2 − b2)(|ag|Ξb − |bg|Ξa) + 2x0(|ag|Ξb + |bg|Ξa)
(2Ξa + 2Ξb − ΞaΞb)(a2 + b2 + 2a2b2g2 + x0) − 8a2b2g2(Ξa + Ξb)

(4.27)

where

x0 =
√

(a2 − b2)2 + 4a2b2Q (4.28)

5Note the rather simpler expressions, in particular for BPS saturating solutions, derived in [11] depend

crucially on the signs of electric charge and angular momenta all being positive and for our solitons this is

often not true.
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It is difficult to make any analytic statements analogous to the asymptotically flat

case, although plotting several examples the pattern seems rather similar; there are regions

which exceed the BPS bound if the angular momenta have nearly equal magnitude and

other regions where the bound is satisfied. Whether the BPS bound is in fact violated for

smooth solutions depends on whether one considers equally rotating, unequally rotating

asymptotically flat, or unequally rotating asymptotically AdS solutions and we now turn

to a case by case analysis of these solitons.

5 Equally rotating bubbles

5.1 The solution

From (3.54) if b = ±a, independently of the value of Q

γ0 =
m1

m0
= ±1 (5.1)

and so

|m1| = m0 = 1 (5.2)

The solution in this case is simple enough that writing the metric and potential explicitly

may be useful for the reader. For the sake of simplicity, we define rescaled angles

θ̄ = 2θ (5.3)

ψ̄ = 2αψ (5.4)

and

φ̄ = −(β ∓ δ)φ (5.5)

so that 0 ≤ θ̄ ≤ π, ψ̄ has a period of 4π, and φ̄ a range of 2π. Note the factor we use to

rescale φ is always nonzero, since if β = ±δ, αδ − βγ = 0. In these rescaled coordinates

the metric is

ds2 = gtt(r)dt
2 + α1(r)dt(dψ̄ + β0dφ̄) + α2(r)(dψ̄ + β0dφ̄)2

+
r2 + a2

4Ξa
(dθ̄2 + sin2 θ̄dφ̄2) +

r2(r2 + a2)

W
dr2 (5.6)

while the potential is

A = ± sǫ
√

3 a2Q

Ξa(r2 + a2)

[

− dt +
a

2

(

dψ̄ + β0dφ̄
)]

+ C0dψ + C1dφ (5.7)

where

β0 = cos(θ̄) − β ± δ

β ∓ δ
(5.8)

and

gtt(r) = − 1

Ξ2
a(r

2 + a2)2

[

g2Ξar
6 + Ξa(1 + 2a2g2)r4
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+a2(2 − a2g2 − a4g4 − ΞaQ−Q3/2)r2 + a4(Ξa(1 −Q) −Q3/2 +Q2)
]

(5.9)

α1(r) = −
a3Q3/2

[

r2 + a2
(

1 −√
Q

)]

Ξ2
a(r

2 + a2)2
(5.10)

α2(r) =

[

r2 + a2
(

1 −√
Q

)]

4Ξ2
a(r

2 + a2)2

[

Ξar
4 + Ξaa

2(2 +
√

Q)r2 + a4(Ξa(1 +
√

Q) +Q3/2)
]

(5.11)

and

W =
(

r2 + a2
)2(

1 + g2r2
)

− a2Q
(

1 + a2g2 +
√

Q
)

r2 − a4Q
(

2 −Q
)

(5.12)

Note the location of the bubble in this case is at

R0 = −a2(1 −
√

Q) (5.13)

as one may see directly in (5.10), (5.11). In this case once ψ̄ pinches off, one is left with

a round S2, as promised earlier. Specifying β = ∓δ reproduces the usual Hopf fibration

(appendix A). For the case g = 0, this solution can be generated by applying the solution

generating technique of ([7]–[10, 29]–[31]) to the Eguchi-Hanson soliton [5].

5.2 Smoothness

With b = ±a the absence of a conical singularity at the bubble (3.58) becomes a cubic in
√
Q

(

1 −√
Q

)(

2Ξa +
√
Q

)2

Ξ2
a

=
1

k2
(5.14)

If one defines

ϑ = arccos

[

1 − 27Ξ2
a

2k2(1 + 2Ξa)3

]

(5.15)

the single real solution of (5.14) is

Q0 =

[

2(1 + 2Ξa)

3
cos

(ϑ

3

)

+
1 − 4Ξa

3

]2

(5.16)

One may further verify 0 < Q0 < 1 so we respect the bound imposed by (3.19).

For the asymptotically flat case, the Dirac quantization condition is

a =
p

e0
√

3Q
(5.17)

which merely quantizes the overall dimensionful scale and imposes no further restriction

on the soliton. For the asymptotically AdS case the Dirac quantization condition becomes

ag
√
Q0

1 − a2g2
= p

g√
3e0

(5.18)

One can check that for any fixed value of k the left hand side of (5.18) monotonically

interpolates between 0 and ±∞ (depending on the sign of a), as |ag| goes between 0 and

1, so for any given p and e0 there will be a unique value of ag such that 0 < |ag| < 1

and (5.18) is satisfied. For example, if e0 = g/
√

3 and k = p = 1, |ag| ≈ .6404. For the

sake of visualization we have plotted the left hand side of (5.18) versus ag for k = 1. As

|ag| → 1 Q0 → 1 and one gets to arbitrarily large values of p.
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0.0 0.2 0.4 0.6 0.8 1.0
a g

5

10

15

20

25

p

Figure 1. Dirac quantization condition for equally rotating k = 1, e0 = g/
√

3; only integer values

of p are actually realized.

5.3 Ergoregion

We wish to find ergosurfaces associated to ∂/∂t, or in other words the zeroes, if any, of

gtt. Let us first note gtt (5.9) is independent of the sign of b/a, so these questions are

independent of the relative signs of the two angular momenta (Jφ1
and Jφ2

). For the

asymptotically flat case, the zeroes of gtt(r) occur at

r2 =
a2

2

[

− 2 +Q+Q3/2 ±Q

√

(
√

Q− 1)(3 +
√

Q)

]

(5.19)

where the signs indicate the two possible roots (with any given sign of b/a). Since regularity

demands 0 < Q < 1, both roots are complex and for g = 0 there is no ergoregion. In this

case, the Killing vector ∂
∂t is globally timelike.

The asymptotically AdS case is somewhat more complicated. If we define r2 = R0+a2z

so that z is a dimensionless measure of how far we are away from the bubble,

gtt =
z3z

3 + z2z
2 + z1z + z0

Ξ2
a(z +

√
Q)2

(5.20)

where

z3 = −a2g2Ξa (5.21)

z2 = −Ξa

[

Ξa + 3a2g2
√

Q
]

(5.22)

z1 =
√

Q
[

− 2Ξ2
a + Ξa(1 − 3a2g2)

√

Q+Q
]

(5.23)
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and

z0 = −Ξ2
aQ

[

1 −
√

Q
]

(5.24)

Note z0, z2, and z3 are negative definite. Hence gtt is negative at the bubble surface, as

well as at infinity. Whether z1 is positive or negative depends on the values of Q and ag.

If z1 is negative we are assured there is no ergoregion, while if it is positive there may be

a bounded region where gtt becomes positive. Note such ergoregions, provided they exist,

are rather unusual; one has both an inner and outer ergosphere. Aside from the usual

black hole case where the inner ergosphere is inside a horizon and inaccessible to outside

observers, we are not familiar with another solution with this structure of ergospheres.

Indeed, arguing that there is no ergoregion disjoint from the horizon is an important part

of the black hole uniqueness theorems.

In fact, such ergoregions do exist for certain values of the parameters. Recall from

the previous section that as p becomes large for any fixed k, |ag| ∼ 1. Furthermore, as

|ag| → 1, Ξa → 0 and z0, z2, and z3 become arbitrarily small while z1 becomes positive

definite, so there will exist a range of positive z for which gtt is positive. Likewise, if k

becomes large, Q0 ∼ 1 and z0 becomes small while z1 ∼ a4g4 and hence for sufficiently

small z there will be some region where gtt becomes positive. Examining the cubic roots

of the numerator of gtt for the case e0 = g/
√

3 one finds there are no ergospheres if and

only if p = 1 and k = 1 or p = 1 and k = 2. In these cases two roots of the cubic are

complex and the other root is negative. Plotting the other roots, noting that due to (5.18)

since Q0 < 1 that if p = 1, |ag| > 0.6180 and if p ≥ 2, |ag| > 0.7807, one always finds

two positive roots for z and hence the double ergosphere structure we have described. See

figure 2 for gtt for the first several cases for values of p and k with e0 = g/
√

3.6

5.4 BPS bound

Now turning to the BPS bound, for the asymptotically flat equally rotating case

βQ =
|q|
m

=
2

1 +
√
Q0

(5.25)

which is manifestly larger than one since 0 < Q0 < 1. Specifically for the equally rotating

asymptotically flat case one finds

βQ = sec

[

1

3
arccos

[

1 − 1

2k2

]

]

(5.26)

As expected from the usual observation that deficit angles correspond to positive mass

contributions [26], this is maximized at k = 1 in which case βQ ≈ 1.064. See figure 3.

For the asymptotically AdS case,

βQ = 1 +
(1 − |ag|)

[

3(1 −√
Q0) + |ag|(3 +

√
Q0 + |ag| + a2g2)

]

(1 − a2g2)(3 − a2g2) +
√
Q0(3 + a2g2)

(5.27)
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gtt

z
0.05 0.10 0.15 0.20 0.25 0.30

-0.10

-0.05

0.05

0.10

Figure 2. gtt for (p = 1, k = 1) [short dashes], (p = 1, k = 2) [long dashes], (p = 1, k = 3) [thin

line], and (p = 2, k = 1) [thick line] equally rotating AdS solutions with e0 = g/
√

3; z parametrizes

the radial distance from the bubble.
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ΒQ

Figure 3. BPS violation for the equally rotating asymptotically flat soliton versus orbifold integer

k (k = 1: no orbifold, k ≥ 2: Zk orbifold)

Note then βQ is strictly greater than one and we again violate the BPS bound.7 See

table 1 and figure 4 for some specific examples. The violation of the bound is persistent,

6The above simple observations and examples contradict the statement of [15] regarding an ergoregion;
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Figure 4. BPS violation for the equally rotating asymptotically AdS solutions as a function of the

dimensionless rotation ag < 1. The upper curve corresponds to k = 1, the second curve to k = 2,

and the lowest curve to k → ∞. For any fixed e0, only a discrete family of points along the plotted

curves are actually realized; circles mark these points for p between 1 and 100 for e0 = g/
√

3. The

distinct class of asymptotically flat solitons with g = 0 are shown with square marks.

but relatively modest. Consider in some detail the case e0 = g/
√

3. Just from the fact

that k ≥ 1 and p ≥ 1 one can show with a few numerical plots that |ag| > 0.618 and

Q0 > 0.842 and then βQ < 1.267. Hence, the bubble with p = k = 1 is very close to

the maximum possible value of βQ, although verifying the intuition that it will correspond

to the maximum possible value of βQ for a smooth solution appears to be technically

nontrivial. The fact that βQ is bounded above is not terribly surprising; if it could be

made parametrically large one might expect to obtain a rapidly expanding bubble, not a

stationary solution. It is somewhat surprising that βQ can be larger in the asymptotically

AdS case than in the asymptotically flat case, but the bound for AdS includes contributions

from the angular momentum absent in the asymptotically flat case.

the analysis there is rather more complicated in that coordinate system and we suspect an algebraic error

has occurred.
7This solution was previously discussed in [15], but the notion of the BPS bound applied there is

m − |q| > 0, which corresponds to the usual notion of the bound for asymptotically flat spaces but not

asymptotically AdS ones.
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(p,k) βQ (p,k) βQ (p,k) βQ
(1,1) 1.2634 (1,2) 1.2427 (1,10) 1.2363

(2,1) 1.2121 (2,2) 1.2053 (2,10) 1.2032

(3,1) 1.1691 (3,2) 1.1662 (3,10) 1.1653

(4,1) 1.1392 (4,2) 1.1377 (4,10) 1.1373

(5,1) 1.1180 (5,2) 1.1171 (5,10) 1.1168

(10, 1) 1.0664 (10,2) 1.0662 (10,10) 1.0662

(25,1) 1.0286 (25,2) 1.0285 (25,10) 1.0285

(100, 1) 1.0074 (100,2) 1.0074 (100,10) 1.0074

Table 1. BPS violation for equally rotating AdS solitons with e0 = g/
√

3

6 Asymptotically flat unequal angular momenta

6.1 Smoothness

In this case we will solve for Q in terms of γ0 (3.54) and use the conical singularity con-

dition to solve for b/a. As in the previous asymptotically flat case, the Dirac quantization

condition will merely quantize the overall dimensionful scale (say a). If one defines

x0 =
√

(a2 − b2)2 + 4a2b2Q (6.1)

and

b0 =
b

a
(6.2)

then if b2 6= a2 (3.54) can be solved only if

b0γ0 > 0 (6.3)

and further

b0γ0 6= 1 (6.4)

Imposing these restrictions one finds from (3.54)

x0 =
a2(b20 − 1)(b0γ0 + 1)

1 − b0γ0
(6.5)

and further

Q =
(b20 − 1)2

(1 − b0γ0)2
γ0

b0
(6.6)

Note we have two non-trivial constraints we must impose for the above to make sense,

namely x0 > 0 and 0 < Q < 1. If γ2
0 = 1 one quickly finds that Q > 1, so we must forbid

that case. The necessary and sufficient condition for all of the above requirements to be

true is that if |γ0| < 1

1 < |b0| < |γ0|−1/3 (6.7)

and if |γ0| > 1 then

|γ0|−1/3 < |b0| < 1 (6.8)
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provided one chooses the sign of b0 such that b0γ0 > 0.

The absence of a conical singularity (3.58) in this case becomes

(1 − b30γ0)(1 − γ2
0)2

(1 − b0γ0)3
=

1

m2
0k

2
(6.9)

and since this is a cubic in b0 we may solve it explicitly. In all cases, it turns out there is

only one relevant root.

For the special case where m1 = ±(m0 + 1) and k = 1 the single root such that

b0γ0 > 0 is

b0 = ±3m0 + 1

3m0 + 2
(6.10)

and likewise in the case m1 = ±(m0 − 1) (and taking m0 ≥ 2 since we forbid γ = α = 0)

and k = 1 the single root such that b0γ0 > 0 is

b0 = ±3m0 − 1

3m0 − 2
(6.11)

One can show that (6.10) and (6.11) satisfy (6.8) and (6.7), respectively, so we have met

our smoothness conditions.

Now turning to the more generic case, let us define

C =
m2

0k
2γ2

0(γ2
0 − 1)3[m4

0k
4(γ2

0 − 1)3 +m2
0k

2(1 + γ2
0 − 2γ4

0) + γ2
0 ]

2
[

m2
0k

2(γ2
0 − 1)2 − γ2

0

]3 (6.12)

and

D =
m4

0k
4γ4

0(γ2
0 − 1)6[m4

0k
4(γ2

0 − 1)2 − 2m2
0k

2(γ2
0 + 1) + 1]

4
[

m2
0k

2(γ2
0 − 1)2 − γ2

0

]4 (6.13)

It is straightforward to check that the denominators of C and D are never vanishing

(recalling that γ0 = m1/m0 and m1 and m0 are both integers), so the above expressions

are sensible. Except for the special cases (6.10) and (6.11), one can show D > 0 and

furthermore C −
√
D > 0. Then the single real root of the cubic is

b0γ0 = − γ2
0

m2
0k

2(γ2
0 − 1)2 − γ2

0

+
(

C +
√
D

)1/3
+

(

C −
√
D

)1/3
(6.14)

There is no obvious analytic method to determine whether (6.14) falls in the relevant

ranges for smoothness (6.7), (6.8), but where numerics are reliable they consistently show

the roots respect these bounds. The caution in the prior statement is due to the fact that

one loses numerical control (at least in the simple approach we have used) as |γ0| → ∞ or

m2
0k

2 → ∞. The appropriate asymptotic series, however, show no signs of any difficulties

so we believe (6.14) always obeys the appropriate smoothness bounds.
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6.2 BPS bound

In the asymptotically flat case the ratio of charge to mass is

βq =
|q|
m

=
2(1 − b0γ0)

|b0| − |γ0|
(6.15)

once we impose the value of Q (6.6) and take care to choose signs according to b0 in the

appropriate ranges (6.7), (6.8). First let us consider whether there are any solitons which

saturate the BPS bound. βq will equal 1 if (and only if)

|b0| =
2 + |γ0|
1 + 2|γ0|

(6.16)

and further it is straightforward to check (6.7) and (6.8) are obeyed for the appropriate

ranges of γ0. The absence of a conical singularity (6.9) becomes

(1 − |γ0|)2 =
1

m2
0k

2
(6.17)

or equivalently

(m0 − |m1|)2 =
1

k2
(6.18)

(6.18) will then be satisfied if and only if k = 1 and |m1| = m0±1. These are precisely the

special cases we described in the section above (6.10), (6.11). Under normal circumstances

the saturation of the BPS bound would automatically imply these solutions are supersym-

metric. However, since we know the bound can be violated this usual conclusion is subject

to question; it would be interesting to explicitly check for the existence of Killing spinors.

To the best of our knowledge, this particular class of solutions has not been noticed before.

For the remaining cases we must require that b0 is given by (6.14) to avoid a conical

singularity at the bubble. While it is difficult to make any analytic statements about βq
once this is imposed, we find numerically the BPS bound is always respected in this case. As

before, this conclusion is subject to a caveat that one loses numerical control as m0k → ∞
and γ0 → ∞, although again expansions around those points give results respecting the

BPS bound. Intuitively, the above results reflect the fact that one expects the most severe

violations of the bound to be in the most symmetric situation (γ0 = 1), as usually such

configurations minimize the mass. Taking the values of γ0 as close to one as possible

results in BPS saturating solitons and any other choice gives solitons satisfying the bound.

Alternatively, one can understand the increase in mass, and decrease in βQ, as the result of

the increased orbifolding one must perform as the angular momenta become more unequal.

6.3 Ergoregion

In this case the norm of ∂/∂t is given by

gtt = −ρ
4 − 2mρ2 + q2

ρ4
(6.19)

and so there are two surfaces were gtt vanishes

ρ2
± = m±

√

m2 − q2 (6.20)
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Since ρ2 = r2 +a2 cos2 θ+ b2 sin2 θ, the maximum and minimum value of ρ2
± occur at θ = 0

and θ = π/2, although which is a maxima and which a minima depends on the relative

magnitude of a and b. Recalling that m2 − q2 is non-negative if and only if the BPS bound

is satisfied (4.21), since all the solutions in the present class respect this bound we will

have ergosurfaces provided ρ2
± is large enough to be outside the bubble. Further, if ρ2

− is

outside the bubble we will have inner and outer ergosurfaces. In the special case of BPS

saturating solitons (6.10), (6.11), the inner and outer ergosurfaces are at the same radius

and gtt has a second order zero:

gtt = −
(

1 − m

ρ2

)2

(6.21)

It will be handy to define the radial location of the ergosurfaces as R±(θ)

R±(θ) = ρ2
± − a2 cos2 θ − b2 sin2 θ = m±

√

m2 − q2 − a2 cos2 θ − b2 sin2 θ (6.22)

Via a few graphical plots one can show that if b2 < a2 (γ2
0 > 1), including the BPS

saturating soliton with k = 1 and |m1| = m0 + 1,

R±(0) < R0 (6.23)

and

R±(π/2) > R0 (6.24)

or in other words, in traveling along the axis θ = 0 one encounters no ergosurface before

encountering the bubble but along the axis θ = π/2 once goes through two ergosurfaces

before reaching the bubble. Likewise, if b2 > a2 (γ2
0 < 1), including the BPS saturating

soliton with k = 1 and |m1| = m0 − 1,

R±(0) > R0 (6.25)

and

R±(π/2) < R0 (6.26)

and the situation is reversed from that above, as one would have predicted via symmetry.

Defining a radial distance z via R± = R0 + a2 z, we have plotted an example of these

surfaces in figure 5. Note that each of these ergosurfaces runs into the bubble at a finite

value of θ between 0 and π/2. However, since the bubble is a place where a cycle smoothly

degenerates these ergosurfaces are, in fact, manifolds without boundaries (radially incoming

geodesics are reflected back outwards at a shifted value of ψ) .

In fact these ergosurfaces, which we will refer to as capping spheres, surround a pole

of the minimal S2 (i.e. the bubble) and are topologically spheres. To show this, let us first

note these surfaces are simply connected. One may describe a round S3

ds2 = dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2 (6.27)

by a sequence of tori at fixed values of θ ranging between 0 and π/2. The two directions of

the torus at any fixed θ are parametrized by φ1 and φ2 and the tori degenerate into circles

at θ = 0 and θ = π/2. See figure 6.
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z

θ
0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figure 5. Inner [short dashes] and outer [long dashes] ergosurfaces for γ0 = 1/3, k = 1, where z

parametrizes the radial distance from the bubble.

θ = 0 θ = π/4 θ = π/2

Figure 6. S3 as a sequence of tori

For these capping sphere ergosurfaces we do not obtain a complete series of tori but

rather ones only up to some particular value of θ, say θ0, where we run into the bubble. For

the sake of definiteness consider ergosurfaces of the type (6.24) which surround the pole at

θ = 0 and run into the bubble at θ0 < π/2. If we simply cutoff the series of tori at θ0 we

would be left with an apparently non-contractible cycle along the φ2 direction. However,

as we approach θ0 the two directions φ1 and φ2 degenerate and point in the same direction

(more precisely, each of φ1 and φ2 can be seen as a combination of the angles ψ and φ

and as ψ pinches off the surviving portions of φ1 and φ2 both point in the φ direction).

In terms of the sequence of tori this means the angle between the φ1 and φ2 sides is going

to zero (one has an increasingly narrow parallelogram) and at θ0 the two sides touch, as

shown in figure 7.

Now let us consider whether there are any non-contractible cycles in this ergosurface.

Cycles along the φ1 direction may be contracted to a point by dragging the curve to θ = 0

where ∂/∂φ1 degenerates. Cycles along the φ2 direction may be dragged to θ = θ0, at which

point the portion of the cycle which does not degenerate is also lying along the φ1 direction.

This remaining cycle may then be dragged to θ = 0 and shrunk to a point. A generic curve,
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θ = 0 θ = θ0

Figure 7. Sequence of squashed tori in the capping ergosphere

viewed as a combination of cycles in the φ1 and φ2 direction, may be contracted by first

removing the φ1 portion by going to θ = 0 and then going to θ = θ0 and repeating the

above steps to remove the φ2 portion. Hence all cycles in the ergosurface are contractible.

Then this ergosurface is a compact simply connected manifold without boundary; via the

Poincaré conjecture such a manifold is topologically equivalent to a sphere.

7 Unequal angular momenta asymptotically AdS

7.1 Smoothness

In this case we will solve again solve for Q in terms of γ0 (3.54). We will be able to do so

only if

b0γ0 > 0 (7.1)

and further

b0γ0 6= 1 − b2g2

1 − a2g2
(7.2)

Given these restrictions, from (3.54)

x0 =
√

(a2 − b2)2 + 4a2b2Q =
a2(b20 − 1)[1 − b20a

2g2 + b0γ0(1 − a2g2)]

1 − b20a
2g2 − b0γ0(1 − a2g2)

(7.3)

Note the term in brackets in the numerator of (7.3) is positive definite given (7.1) and the

conditions that a2g2 < 1 and b20a
2g2 < 1 (Ξa > 0 and Ξb > 0). Then the condition that

x0 > 0 is

1 − b20a
2g2 − b0γ0(1 − a2g2) < 0 (7.4)

if b20 < 1 and

1 − b20a
2g2 − b0γ0(1 − a2g2) > 0 (7.5)

if b20 > 1. Then Q becomes

Q =
(b20 − 1)2(1 − a2g2)(1 − b20a

2g2)

[1 − b20a
2g2 − b0γ0(1 − a2g2)]2

γ0

b0
(7.6)

The statements that 0 < Q < 1, Ξa > 0, Ξb > 0, as well as (7.2), (7.4) and (7.5), are

equivalent to the requirement

0 < a2g2 <
b30γ0 − 1

b20(b0γ0 − 1)
(7.7)
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and

b0γ0 > 0 (7.8)

and if |γ0| < 1 then

1 < |b0| < |γ0|−1/3 (7.9)

and if |γ0| > 1

|γ0|−1/3 < |b0| < 1 (7.10)

We note (7.8)–(7.10) are the same requirements we had in the asymptotically flat case

and (7.7) becomes trivial as g → 0.

While the absence of a conical singularity (3.58) may be regarded as as cubic equation

for a2g2, there does not seem to be any simple description of the subsequent roots. Hence,

we will at this point impose the Dirac quantization condition with charge e0 = g/
√

3,

suitable for embedding in ten dimensional supergravity as discussed above, which becomes

the statement that

ag(b20 − 1)

1 − b0γ0 + b0(γ0 − b0)a2g2
= pm0 (7.11)

for some integer p. Note from the form of (7.11), together with the above requirements (7.4)

and (7.5), implies we must choose signs such that pag > 0. This then implies that if |γ0| < 1

the single suitable root of ag from (7.11) is

ag =
1 − b20 +

√

(1 − b20)
2 + 4p2m2

0b0(1 − b0γ0)(b0 − γ0)

2pm0 b0(b0 − γ0)
(7.12)

and if |γ0| > 1 it must be true that

ag =
b20 − 1 +

√

(1 − b20)
2 + 4p2m2

0b0(1 − b0γ0)(b0 − γ0)

2pm0 b0(γ0 − b0)
(7.13)

The absence of a conical singularity at the bubble (3.58) becomes

[1 − b20a
2g2 − b30γ0(1 − a2g2)][1 − b20a

2g2 − γ2
0(1 − a2g2)]2

[1 − b20a
2g2 − b0γ0(1 − a2g2)]3

=
1

m2
0k

2
(7.14)

and may be regarded as determining b0 in terms of the integers p, m1, m0, and k

(given (7.12) or (7.13) as appropriate). There does not appear to be any obvious way

to make any analytic statements for this case. Even numerically thoroughly exploring this

four parameter space would be a nontrivial exercise, so for the present we have contented

ourselves with examining a variety of numerical examples which we hope are not atypical.

In each of these examples, numbering more than a hundred, (7.14) has a single root for |b0|
in the bounds (7.9) and (7.10) and (7.7) is always satisfied. In particular the examples we

later list when examining ergoregions and the BPS bound satisfy these limits.
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m1 m0 βQ m1 m0 βQ m1 m0 βQ
1 100 1.0114 5 9 1.0890 2 1 1.2210

2 51 1.0241 3 5 1.1361 11 4 1.0830

1 4 1.1629 87 121 1.0071 9 2 1.1017

3 10 1.0921 3 4 1.1498 23 3 1.0495

1 3 1.1880 4 5 1.1261 27 1 1.0390

2 5 1.1452 9 10 1.0692 1354 19 1.0011

3 7 1.1145 93 101 1.0076 100 1 1.0114

1 2 1.2210 113 117 1.0065 538 1 1.0022

Table 2. Examples of BPS violation for g 6= 0 solitons with p = k = 1

(p,k) βQ (p,k) βQ (p,k) βQ
(1,1) 1.2210 (1,5) 1.2139 (1,100) 1.2136

(2,1) 1.1634 (2,5) 1.1615 (2,100) 1.1614

(3,1) 1.1251 (3,5) 1.1244 (3,100) 1.1244

(4,1) 1.1007 (4,5) 1.1003 (4,100) 1.1003

(5,1) 1.0841 (5,5) 1.0839 (5,100) 1.0839

(10, 1) 1.0458 (10,5) 1.0458 (10,100) 1.0458

(25,1) 1.0193 (25,5) 1.0193 (25,100) 1.0193

(100, 1) 1.0050 (100,5) 1.0050 (100,100) 1.0050

Table 3. Examples of BPS violation for g 6= 0 solitons with γ0 = 1/2

7.2 BPS bound

The complicated smoothness conditions above have prevented us from making any analytic

analysis regarding the BPS bound in the unequally rotating AdS case, but remarkably

enough in the many examples we have examined the BPS bound is always violated.

See table 2 for p = k = 1 with various values of m1 and m0 and table 3 for m0 = 1,

m1 = 2 and various values of (p, k).8 The values listed here do not differ substantially

from other cases we have examined and appear to be “typical”, insofar as we can tell. As a

phenomenological observation, βQ appears to be maximized when all values of the integers

(m0,m1, p, k) are as small as possible. It becomes close to (but still greater than) one when

any one of integers (m0,m1, p) becomes large. βQ appears to be remarkably independent

of the orbifolding integer k. For all cases we have examined, βQ has always been less than

that of the |p| = k = 1 equally rotating AdS solution.

8Since the violation of the bound is independent of the relative signs of the angular momenta, we just

list positive values for γ0, but one obtains identical values of βQ for counter-rotating solutions.
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7.3 Ergoregion

If we define a distance away from the bubble z as

z = R−R0 (7.15)

then

gtt =
∆θ

Ξ2
aΞ

2
bρ

4
(c3z

3 + c2z
2 + c1z + c0) (7.16)

where

c3 = −g2ΞaΞb (7.17)

c2 = −ΞaΞb

[

∆θ +
3g2

2

(

(a2 − b2) cos 2θ +
√

(a2 − b2)2 + 4a2b2Q
)

]

(7.18)

and c1 and c0 are somewhat complicated functions of θ, although easily found given the

metric above. Note c3 and c2 are negative definite. The signs of c1 and c0 depend on values

of the parameters, as well as θ, but note that

c0(θ = 0) = −ΞaΞ
2
b

4

(

a2 − b2 +
√

(a2 − b2)2 + 4a2b2Q
)[

a2 − b2 − 2a2Q

+
√

(a2 − b2 − 2a2Q)2 + 4a4Q(1 −Q)
]

(7.19)

and likewise

c0(θ = π/2) = −Ξ2
aΞb
4

(

b2 − a2 +
√

(b2 − a2)2 + 4a2b2Q
)[

b2 − a2 − 2b2Q

+
√

(b2 − a2 − 2b2Q)2 + 4b4Q(1 −Q)
]

(7.20)

Note then that c0 is negative definite at the poles of the bubble (θ = 0, θ = π/2). Thus at

the bubble at θ = 0 and θ = π/2, gtt is negative definite and we are not inside an ergoregion.

Traveling along the axes θ = 0 and θ = π/2 one can encounter either no ergosurface or two

ergosurfaces — there are no solitons with a single ergosurface surrounding the entire bubble.

Without imposing the absence of conical singularities and the Dirac quantization con-

dition there seems to be very little one can say beyond the above — plotting the roots to

the cubic in (7.16) without these extra conditions gives results which are highly parameter

dependent and seem to cover all possible ergosurface configurations. While, as noted above,

we do not know how to make any statement for arbitrary values of m0, m1, p and k, all of

the substantial number of examples we have examined follow a rather simple pattern. In

the case where m0 = |p| = 1, we have an ergosurface structure like the asymptotically flat

unequally rotating bubbles with double capping spheres that surround the pole θ = 0 and

run into the bubble at values of θ smaller than π/2. Likewise, if |m1| = |p| = 1 we find

double capping spheres surrounding the θ = π/2 axis but no ergoregion around the θ = 0

axis. For all remaining cases we find a single outer ergosphere surrounds the entire bubble

and inner ergosurfaces in the form of capping spheres which surround each pole and do not

intersect each other. Let z1 be the largest (real) root of the cubic (7.16) and z2 be the next

largest. We have plotted these zi (i.e. the location of ergosurfaces) in figure 8 for some par-

ticular solitons; note for the sake of visualization we have actually plotted z1/50l and z2/l.
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Figure 8. Inner [short dashes] and outer [long dashes] ergosurfaces for γ0 = 2/3, k = p = 1 and

inner [thick line] and outer [thin line] ergosurfaces for γ0 = 1/2, k = p = 1, where the vertical axis

parametrizes the distance from the bubble.

8 Spin structure

If we want to consider fundamental fermions on a background of the type we have described

the spin structure must have antiperiodic fermions around any simple contractible cycle.

In the case of the solitons we have described this then implies fermions are antiperiodic

around the ψ direction, since the ψ direction pinches off in the interior of the spacetime.

If ψ was asymptotically a Kaluza-Klein direction this would then be incompatible with

supersymmetric boundary conditions. However, in this case ψ is asymptotically simply

part of an S3. In particular away from the bubble ψ parametrizes a simple closed curve on

S3, since any self-intersection would occur only if our map (φ1, φ2) → (ψ, φ) were not one-

to-one. Since S3 is simply connected, then by definition this curve is smoothly contractible

to an arbitrarily small simple closed curve. Hence the spin structure will have antiperiodic

fermions around this cycle, as well as any other simple closed curve in the S3, and the spin

structure may be defined consistently. Topologically, the modifications we have made to ψ

to produce these solitons is the only difference between these solutions and flat space, so

the above should be not just necessary but a sufficient check of possible obstructions.9

It has been previously asserted [15] that such manifolds are spin only if m0 + m1

is an odd integer. Provided one takes care, as we have, to choose cycles so we obtain

spacetimes which are globally asymptotically flat or globally AdS (i.e. avoid quotients) all

these spacetimes are topologically equivalent, so on general grounds the claim would seem

9Unfortunately, the more formal ways one has of verifying that this is a spin manifold do not seem to be

practical. Computing the second Stiefel-Whitney class of a given four-dimensional Riemannian manifold

is, to the best of our knowledge, a mathematically nontrivial question and likewise it seems unlikely that

one could explicitly solve the Dirac equation on these manifolds.
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Figure 9. Antiperiodic fermions Figure 10. Periodic fermions

to fail. Let us now explain in detail why in fact there is not an apparent obstruction to

defining a spin manifold. While the curve we have considered above may go around both

the poles θ = 0 and θ = π/2 multiple times (according to the values of m0 and m1) it is

not equivalent to a union of simple curves going around θ = 0 and θ = π/2 separately.

The latter is topologically inequivalent to the curve we started with (it is self-intersecting

and/or disconnected) and the assignment of fermion signs is not continuous under this

change of topology, even if one takes care to preserve the orientation of the curve.

This latter point is probably most simply illustrated in the plane. Figure 9 gives a

simple contractible curve, with arrows used to indicate an orientation, and upon which the

spin structure must have antiperiodic fermions. Figure 10 illustrates the self-intersecting

curve we get if one pinches off the “neck” in figure 9. Figure 10 is a self-intersecting curve

which may be viewed as the union of two simple curves. Then since the fermions are

antiperiodic around each simple curve, they are periodic around the entire self-intersecting

curve. Said another way, propagating a fermion around each simple contractible curve

is equivalent to a local Lorentz rotation of 2π and propagating around the entire self-

intersecting curve equivalent to a local Lorentz rotation of 4π. One may consider non-

planar curves if one wishes with similar results — given the manifold is simply connected,

simple curves in the spin structure must have antiperiodic fermions around them but if one

changes the topology of the curve fermions may be periodic or antiperiodic depending on

the number of loops (i.e. whether the total curve is equivalent to a local Lorentz rotation

that is an integer multiple of 2π but not 4π).

9 Summary and discussion

To summarize, in the asymptotically flat case, we find equally rotating solitons that violate

the BPS bound and are free of ergosurfaces. There are special classes of asymptotically

flat solitons that saturate the BPS bound and have a second order zero in gtt but no

finite volume ergoregion. The remaining asymptotically flat solitons satisfy the bound and

have ergosurfaces we have dubbed capping spheres, which are topologically spheres but
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run into the bubble. To our knowledge this kind of ergosurface structure has not been

previously observed.

For the asymptotically anti de Sitter solutions, all the smooth solutions we have found

violate the BPS bound. In the equally rotating case one finds an ergoregion disjoint from

the bubble surface. For the unequally rotating Ads solutions, one either has a set of double

capping spheres around one pole, or a single outer ergosphere and inner capping spheres

around each pole. As far as we know, these kinds of structures have never previously

been described.

There remains a large class of unanswered questions. One would like to understand the

stability of these solutions. Due to the absence of horizons, we do not expect any superradi-

ance even in the solitons with ergoregions, but one can argue generically that the presence

of any ergoregion signals an instability in the spacetime [32]. The issue of stability clearly

deserves to be investigated in detail, but note even if some of the solutions are unstable, the

violation of the BPS bound (a statement regarding the conserved charges) would be unaf-

fected by such instabilities. The fact that all the parameters of these solitons end up being

quantized is striking. One would like to know if this is the result of a fundamental limitation

or merely due to the family of solutions we have considered, despite its rather universal na-

ture as far as (spherical) black holes is concerned. On the other hand, it would be interesting

to see if one could adapt the uniqueness theorems for spherical black holes for solitons. For

the sake of (relative) simplicity we have focused on five dimensional solutions, but it seems

likely that there are analogous solutions in even higher dimensions; in particular one would

like to know if there are asymptotically flat solutions of this type in ten or eleven dimensions.

Perhaps the most striking feature of the solutions we have described above is the

violation of the BPS bound. We should first note that this violation is not necessarily in

any sense catastrophic for minimal supergravity. The solitons all have positive energy and

there is no danger they will destabilize the vacuum. In fact, given that objects which are

well described by supergravity tend to have a great deal of entropy (e.g. black holes) it is

not clear any objects would decay to these solitons.

On the other hand, the BPS bounds we have mentioned are derived using spinorial

proofs following Witten’s positive energy theorem and it is important to understand how

and why we are violating them. In the asymptotically AdS case [27] the supercovariant

derivative involves a term proportional to the potential and hence it is conceivable that

one might produce another term in the theorem proportional to the local magnetic charge,

just as one does in a Hamiltonian derivation of the first law of black hole mechanics in the

presence of such charges [20]. The asymptotically flat construction, however, appears to be

unhampered by the existence of a potential which is globally not defined. It would seem

a g → 0 limit of even a modified AdS BPS bound should reproduce the asymptotically

flat case, as is true for the unmodified versions. Further, it would be surprising if such a

contribution came in with the opposite sign to electric charge to reduce the violation of

the bound; usually different charges in a configuration do not act to cancel each other.

There two possible technical obstructions to the implementation of the above theorems.

It is necessary in these arguments to insist that the Dirac equation projected into a spacelike

slice vanishes and we are not aware of a demonstration one can always do this in the
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presence of matter fields and nontrivial topology in more than three spatial dimensions.

Furthermore, one needs to assume the spinors used are asymptotically covariantly constant.

It is conceivable that one can define spinors on this spacetime but they cannot be made

regular at the bubble and constant at infinity at the same time. At the present we have

not investigated either one of these possibilities in detail and the apparent contradiction

between the solitons and the theorems remains a mystery.

With regards to AdS/CFT, this violation of the bound seems particularly surprising.

In the CFT, the bound is simply derivable from the supersymmetry algebra. We should

emphasize the falloff rates of the metric and field are the usual ones (and the same as those

for black holes, including the supersymmetric ones, in minimal supergravity) so it seems

hopeless to suggest this is some non-normalizable deformation of the usual theory. It is

true, however, the potential is not globally well-defined and presumably the field theory is

aware of this. One might hope that this modifies the supersymmetry algebra, as is known

to occur in field theories with topological charges [33]. One might also hope that due to

some subtlety, one is allowed to only consider some subset of the eigenvalues of the matrix

of {Q,Q} and the absolute values normally in the BPS bound are incorrect. We have the

freedom to choose the signs of the electric charge and angular momenta by choosing a, b,

and sǫ appropriately, so any such alternative definition of the bound would somehow have

to neutralize this apparent freedom. We do not know that this is possible.

If none of the above hopes or speculations turns out to be true, one would seem to

have a significant mystery for AdS/CFT. These solitons seem to be perfectly regular and

it would seem there is no obstruction, at least in principle, to doing perturbative string

theory using them as backgrounds. One would seem to either have to explain there is some

hidden pathology we have missed or explain why it is consistent to ignore such geometries.

Presuming one can overcome the mystery regarding the BPS bound, one would have objects

with local charge and unusual ergosurfaces, uncomplicated by the presence of horizons, as

new backgrounds to explore the correspondence.
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A The Hopf fibration

Given a three sphere we may parametrize it in the usual way with a polar angle θ and two

periodic directions φ1 and φ2

ds2 = dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2 (A.1)

where 0 ≤ θ ≤ π/2 and 0 ≤ φ1 < 2π and 0 ≤ φ2 < 2π. One may define combinations of

the angles

ψ = φ1 + φ2 (A.2)

and

φ = φ2 − φ1 (A.3)

and a rescaled polar angle

θ̄ = 2θ (A.4)

so that (A.1) becomes

ds2 =
1

4

[

(dψ + cos θ̄ dφ)2 + dθ̄2 + sin2 θ̄dφ2
]

(A.5)

and we recognize the latter components as the metric on a round S2. In terms of Cartesian

coordinates which cover the sphere we have

x1 = sin θ sin
ψ − φ

2
(A.6)

x2 = sin θ cos
ψ − φ

2
(A.7)

x3 = cos θ sin
ψ + φ

2
(A.8)

x4 = cos θ cos
ψ + φ

2
(A.9)

Note that if one insists that one has an entire S3 and ψ and φ are periodic directions,

the periods of ψ and φ would have to be integer multiples of 4π. In particular, under the

replacement φ→ φ+ 2π, xi → −xi.
On the other hand, if we are to have a diffeomorphism, then the proper area of the

sphere in these new coordinates must necessarily be 2π2, which implies, after a few lines

of algebra, that

∆ψ∆φ = 8π2 (A.10)

where ∆ψ and ∆φ are the ranges of ψ and φ respectively. If we took ψ and φ to be periodic

directions both periods would have to be integer multiples of 4π and (A.10) can not be

satisfied — in other words, if ψ and φ are both periodic one has covered the unit sphere

multiple times. If we require one of the directions, say ψ, to be periodic then its period must

be 4π and φ (not a periodic direction) must have range 2π. Under these circumstances one

can show, with a bit of algebra, that given any Cartesian point on the sphere (x1, x2, x3, x4)

the values of ψ and φ are uniquely determined. Hence we have a one-to-one onto invertible
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map — i.e. a diffeomorphism. If one insisted on making ψ periodic with period 2π, one only

has a diffeomorphism if one takes the sphere with opposite points identified (xi ≡ −xi),
i.e. S3/Z2. This will cut the area of the sphere in half, but by cutting the period of ψ in

half we can restore the analog of (A.10) and obtain a diffeomorphism.

B Generalizing the Hopf fibration

We will choose our parameters (α, β, γ, δ) and ranges for our angles ψ and φ such that one

fundamental domain in our new coordinates (θ, ψ, φ) is diffeomorphic to a full S3. That

is, there is a one-to-one onto mapping such that if we take φ1 and φ2 as defined by (3.3)

and (3.4) there are Cartesian coordinates (x1, x2, x3, x4) that cover the sphere precisely once

x1 = sin θ sinφ1 (B.1)

x2 = sin θ cos φ1 (B.2)

x3 = cos θ sinφ2 (B.3)

x4 = cos θ cos φ2 (B.4)

Since we will insist that ψ is a periodic direction (so that it may be pinched off in the

interior of the spacetime) the period of ψ, ∆ψ, must be an integer multiple of 2π/α, as

well as 2π/γ, and the ratio γ/α must be rational. Then, as before, we take

γ

α
=
m1

m0
(B.5)

where m1 and m0 are relatively prime integers and m0 > 0.

If φ were a periodic direction as well then likewise that would force the ratio β/δ to

be rational. If we insist that both ψ and φ are both periodic directions with periods 2π,

as we will see below, this turns out to force |αδ − βγ| = 1. Given these restrictions, and

also insisting αδ − βγ > 0, after a rescaling of the angles these transformations would

be the SL(2,Z) transformations. Note, however, φ need not necessarily be periodic for

our purposes and, as we reviewed above in appendix A, in the simple case of the Hopf

fibration if we took φ to be periodic the new coordinates can only be diffeomorphic to the

quotiented sphere. Instead we wish to restrict ourselves to the case where we have globally

asymptotically AdS or globally asymptotically flat space. φ still must have some definite

range ∆φ and this is given in terms of ∆ψ and our parameters (α, β, γ, δ) by insisting that

the proper area of the unit S3 in these new coordinates be 2π2:

∆φ =
(2π)2

∆ψ|αδ − βγ| (B.6)

If φ is not periodic we will not have properly specified our new fundamental domain

(0 ≤ ψ < ∆ψ, 0 ≤ φ < ∆φ) until we provide a smooth rule describing the limit as one

approaches the edge of this domain. The only rule that appears to make any sense is that

limφ→∆φ(ψ, φ) yields the same point on the S3 as that corresponding to (ψ+ δψ, 0), that is

if we go to the edge of the domain at φ = ∆φ at some ψ we go to φ = 0, but not necessarily

to the same value of ψ. We have sketched the situation in figure 11, drawing for simplicity
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ψ

∆φ

φ

∆ψ
(∆φ, ψ0)

(0, ψ0 + δψ)

δψ

Figure 11. A fundamental domain with equivalent points on S3

the constant ψ and φ lines at right angles. As long as such a rule is satisfied, the direction

φ will be periodic on any surface on which the ψ direction degenerates and which all values

of ψ are taken simultaneously. This is precisely the situation we encounter when we find

solitons by adjusting parameters such that there is a surface where ψ degenerates.

This smoothness rule requires that these two corresponding points in the domain yield

the same φ1 and φ2 up to integer multiples of 2π. A few lines of algebra shows this can

only work if the period of ψ is precisely

∆ψ =
2πm0

|α| (B.7)

(recalling γ/α = m1/m0) and that

δψ =
β

α
∆φ− 2πp0

|α| sgn(αδ − βγ) (B.8)

where (p0, p1) are integers such that

p1m0 − p0m1 = 1 (B.9)

The existence of such an integers (p0, p1) is proven by Bézout’s identity. There are clearly

multiple solutions to (B.9); given one set (p0, p1) of solutions, (p1 + l0m1, p0 + l0m0) for

any integer l0 will work just as well. Fortunately it is known these are the only solutions

to (B.9) and shifting the value of p0 → p0 + l0m0 shifts δψ by an integer number of periods
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∂
∂φ

∂
∂ψ

∂
∂φ1

(φ = 0, δψ)

(0, 0)

∂
∂φ2

(∆φ, δψ)

(φ, ψ = 0)

Figure 12. Hopf fibration case. The two rectangles denote two fundamental domains at fixed

azimuthal angle θ. Equivalent points on S3 are marked by dots and crosses. The identification of

points at the extremities of the fundamental domain define δφ.

of ψ, that is by l0∆ψ. Hence there is only one such p0 within a fundamental domain. We

note under these conditions the range of φ is

∆φ =
2π

|m0δ −m1β|
(B.10)

It is also possible to derive the above conditions using graphical methods. For the

sake of simplicity, we will restrict that discussion to the case where α > 0 and αδ−βγ > 0.

Then the fact that ψ is a periodic direction implies the axis ψ defined by φ = 0 should

cross the lattice defined by φ1 ∼ φ1 + 2π, φ2 ∼ φ2 + 2π and hence γ/α is rational as

before (B.5). The period ∆ψ of ψ is determined by first finding on the axis φ = 0 which

values of (φ1, φ2) correspond to the same point on the sphere as (φ1 = 0, φ2 = 0) and

then evaluating ψ for the couple (φ1, φ2) with the smallest φ1 > 0, i.e. the first point on

the axis φ = 0 equivalent to (φ1 = 0, φ2 = 0). Specifically, we find the smallest positive

integers p0, p1 such that αψ = 2πp0 and γψ = 2πp1. Using (B.5), we get m1p0 = m0p1.

The smallest solution is p0 = m0, p1 = m1. At that point, ψ has the value 2πm0/α and

hence the period of ψ, ∆ψ is then given by 2πm0/α.

The rule for the smoothness of the domain in this line of reasoning becomes the state-

ment that the φ1 and φ2 coordinates of the points (φ+∆φ,ψ) and (φ,ψ+δψ) can only differ

by integer multiples (p0, p1) of 2π. One has 2πp0 = −αδψ+β∆φ and 2πp1 = −γδψ+δ∆φ.

Replacing δψ in one equation using the other, one gets (B.9). Removing ∆φ using both

equations or rewriting the first equation, one finds

δψ = − 2π

αδ − βγ
(p0δ − p1β) =

β

α
∆φ− 2πp0

α
(B.11)

as before. We have sketched the situation in Hopf fibration case in figure 12.
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C Electric and local magnetic charges

Let us now consider the relationship between the local magnetic charge and the global

electric charge. Since the metric and the field strength are regular everywhere, the electro-

magnetic field obeys the equation of motion

d ⋆ F − 1√
3
F ∧ F = 0. (C.1)

without sources in the whole spacetime. The gauge field even though it is abelian is self-

interacting strongly in the spacetime due to the Chern-Simons coupling.

As discussed before, these regular solutions have a net global electric charge because

there is no globally defined regular potential. One may write down the magnetic charge as

a quantity proportional to the difference of the gauge potential between the two patches

N and S
A|S −A|N = (Aφ|S −Aφ|N )dφ ≡ ∆Aφdφ, (C.2)

where, for definitiveness the northern region N is defined as the region of spacetime of

constant time t and 0 ≤ θ ≤ π
4 and the southern region S as the region of spacetime of

constant time t where π
4 ≤ θ ≤ π

2 . Integrating the expression (C.1) in the northern region

and in the southern region and summing the contributions, we get

0 =

∫

N

(

d ⋆ F − 1√
3
F ∧ F

)

+

∫

S

(

d ⋆ F − 1√
3
F ∧ F

)

, (C.3)

=

∫

∂N

(

⋆ F − 1√
3
F ∧A

)

+

∫

∂S

(

⋆ F − 1√
3
F ∧A

)

, (C.4)

where we used Stokes’ theorem on the second line. Now, the boundary of the region N
consists in the northern hemisphere of the surface S3

∞ at infinity and the equator E . The

southern region admits the southern hemisphere of S3
∞ and the equator E with an opposite

orientation. Using the definition of electric charge at infinity (4.17), we thus get the identity

QE =
∆A√

3

∫

E
F ∧ dφ. (C.5)

Since the left-hand side is gauge invariant and the right-hand side is the integral of a closed

form, the right hand side does not depend on any specific property of the surface E which

could be smoothly deformed. We see explicitly from this relation that the origin of electric

charge lies both in the non-linear Chern-Simons interaction and in the non-existence of a

globally defined gauge field.
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